VECTORES
Los vectores virales agrupan cuatro tipos de virus: retrovírus, adenovirus, virus adnoasociados y herpesvirus; existen también vectores no virales, como el bombardeo con partículas, la inyección directa de ADN, los liposomas catiónicos y la transferencia de genes mediante receptores.
VECTORES VIRALES
Los retrovirus comprenden una clase de virus cuyo material genético es una cadena sencilla de ARN; durante su ciclo vital, el virus se transcribe en una molécula bicatenaria de ADN, gracias a la acción de la enzima reverso transcriptasa, que se integra en el genoma de la célula huésped sin aparente daño para ella. La mayor parte de los retrovírus a excepción del HIV, sólo se pueden integrar en células con capacidad para replicarse, lo cual restringe su uso. Sin embargo, se pueden desarrollar en grandes cantidades y su expresión en la célula hospedadora se realiza durante largos periodos de tiempo. Los adenovirus son un conjunto de virus con ADN lineal de cadena doble. Los vectores de adenovirus son más grandes y complejos que los retrovirus, pues en su construcción solamente se elimina una pequeña región del material genético vírico. Su ciclo de infección, que comprende de 32 a 36 horas en un cultivo celular conlleva en primer lugar la síntesis de ADN de la célula y, posteriormente la sintesis y ensamblaje del ADN y las proteínas víricas. Las infecciones de estos virus en seres humanos están asociadas a enfermedades benignas, como la conjuntivitis.
La Principal ventaja de su utilización en la terapia génica es que se pueden producir en grandes cantidades y transfieren de forma muy eficaz el material genético a un número elevado de células y tejidos, aunque el hospedador parece limitar la duración de la expresión del nuevo material genético. Los virus adenoasociados son muy pequeño no autónomos y con ADN lineal de cadena sencilla. Para la replicación de estos virus es necesaria la confección con adenovirus. La inserción del material genetico de los adenovírus asociados se suele producir en regiones del cromosoma 19. Los vectores que se forman con este tipo de virus son muy simples, no pueden exceder en mucho la longitud del ADN viral, aproximadamente 4.680 nucleótidos, y son capaces de expresarse a largo plazo en las células que no se dividen; sin embargo, la respuesta que producen en la célula hospedadora es menor que la que se ocasiona con el tratamiento con adenovirus y es difícil la producción de este vector en grandes cantidades. Los herpesvirus poseen un material genético compuesto por ADN de doble cadena lineal, con un tamaño aproximado de 100 a 250 Kb.
Presentan variaciones en cuanto al tamaño y organización del genoma, contenido genético o células sobre las que actúan. Pero por regla general, este tipo de de virus son muy útiles, pues es posible insertar en su genoma grandes cantidades de ADN extraño y llevar a cabo durante largos periodos de tiempo infecciones latentes en la célula hospedadora, sin ningún efecto aparente sobre ésta. En la clase de los gamma-herpesvirus como el virus de Epstein-Barr, se pueden producir infecciones latentes en células en división, de modo que el material genético que lleva insertado el virus se replica conjuntamente a la división celular y se hereda en toda la nueva progenie de células. El inconveniente que presentan estos virus es que están asociados a daños linfoproliferativos, con lo cual, para su uso como vectores es necesario identificar estos genes y eliminarlos, manteniendo únicamente aquellos que permitan la replicación del virus y el mantenimiento del plásmido viral. Hasta la fecha, el uso fundamental de los herpesvirus en la terapia génica se limita al empleo in vivo del herpes simples (HSV)
- Retrovirus
Son virus ARN que tienen capacidad para integrar genes terapéuticos relativamente grandes (un máximo de 8 Kb). Necesitan de células empaquetadoras para su obtención. Se transfiere el DNA del virus mediante la técnica del fosfato de calcio a las células empaquetadoras. Posteriormente se realiza una segunda transducción en la cual introducimos la construcción génica de interés.
Los virus inyectados en el huésped integran su DNA en el genoma del huésped expresando así el gen que le hemos añadido. Como las proteínas del virus no son expresadas por el huésped, no tenemos una respuesta inmunitaria. Tienen una alta eficacia de transducción y también de expresión, siendo un sistema bien estudiado.
Sin embargo, únicamente sirven para infectar células del huésped que se encuentran en división. Además los títulos de virus obtenidos hasta ahora son bajos y la integración en el genoma es al azar.
Existen también vectores basados en el virus del SIDA (HIV), cuyo genoma es más complejo pero con un funcionamiento similar al que hemos visto. Son los denominados lentivirus.
- Adenovirus
Son una familia de virus ADN que causan infecciones en el tracto respiratorio humano. Se pueden llegar a insertar en ellos hasta 7.5 Kb. de DNA exógeno. Normalmente en terapia génica se utiliza el serotipo 5, aunque existen hasta 42 serotipos diferentes que infectan a humanos.
En este caso no se necesita la integración del material hereditario del virus en el del huésped para su replicación, por lo tanto tampoco el transgén será introducido en el genoma de la célula. Y por tanto tampoco necesitan que las células infectadas estén dividiéndose para su replicación.
La gran ventaja de usar un adenovirus como vector es la alta eficacia de transducción, al igual que la expresión de la construcción génica introducida, sin embargo ésta es transitoria (pocas semanas). Esto último obligaría a tratamientos periódicos lo cual es un inconveniente ya que los adenovirus producen respuesta inmune celular e inflamatoria.
- Virus adenoasociados (VAA)
Son parvovirus, contienen DNA como material genético, y requieren la coinfección con un adenovirus para multiplicarse. Son vectores que combinan las ventajas de los retrovirales y los adenovirales. Su capacidad de integrar DNA exógeno es pequeña, sólo de 5 Kb.
Las principales ventajas son que los virus adenoasociados integran su DNA en la célula durante la replicación, por lo que la transducción (la cual es altamente eficaz) es estable en la célula diana. Además pueden infectar tanto a células en división como a las que no lo están (de gran importancia para la terapia génica "in vivo"). Los vectores AAV no están implicados en ningún tipo de enfermedad humana. Además el riesgo de una respuesta inmune está minimizado ya que no produce proteínas víricas.
Sin embargo existen también una serie de inconvenientes como que este tipo de vectores todavía no ha sido tan bien estudiado como los retrovirus y los adenovirus.
- Herpesvirus
Son virus DNA cuyas células diana son las neuronas. Su complejidad y lo poco que todavía conocemos de esta familia de virus dificulta su utilización.
La gran ventaja es el gran tamaño de su DNA , que les permite aceptar varios genes terapéuticos, incluso podrían ir con sus propias regiones reguladoras.
Uno de los inconvenientes es que habría que eliminar las secuencias que codifican para las proteínas líticas del virus que causan la muerte de las células a las que infectan.
Como resumen de los vectores, podemos hacer una recopilación de las características que deberían presentar para obtener el vector ideal para su uso en terapia génica:
- Permitir la incorporación y expresión regulada durante el tiempo conveniente, de uno o más genes necesarios para la aplicación clínica requerida
- Ser específico en su transferencia génica
- Ser irreconocible para el sistema inmune y no inducir respuesta inflamatoria
- Ser estable y fácil de obtener
- Permitir la incorporación y expresión regulada durante el tiempo conveniente, de uno o más genes necesarios para la aplicación clínica requerida
- Ser específico en su transferencia génica
- Ser irreconocible para el sistema inmune y no inducir respuesta inflamatoria
- Ser estable y fácil de obtener
VECTORES NO VIRALES
El bombardeo de partículas constituye una técnica efectiva de transferir genes tanto in vitro como in vivo. En este método físico el plásmido o porción de ADN es recubierto en su superficie por gotas de oro o tungsteno, de 1 a 3 micras de diámetro. Estas partículas, aceleradas por una descarga eléctrica de un aparato o por un pulso de gas son «disparadas» hacia el tejido. El éxito de esta técnica puede estar asegurado en los procesos de vacunación. Otra alternativa es la inyección directa del ADN o ARN puro circular y cerrado covalentemente, dentro del tejido deseado. Este método económico, y un procedimiento no tóxico, si se compara con la entrega mediante virus. Como desventaja fundamental hay que señalar que los niveles y persistencia de la expresión de genes dura un corto periodo de tiempo. Esta tecnologia puede tener potencial como un procedimiento de vacunación y como e genes a un nivel bajo. Los liposomas catiónicos consisten en la mezcla de un 1 lipido catiónico de carga positiva y varias moléculas de ADN con carga negativa debido a los fosfatos de la doble hélice. Este tipo de vectores se han usado en el tratamiento de la fibrosis sistica y en las enfermedades vasculares. Se pueden realizar transferencias de estos vía catéter, aunque su uso es limitado, dedido a la baja eficacia de transfección del material genético contenido en este complejo a la célula hospedadora ya su relativa toxicidad. Un problema que se plantea con las técnicas anteriores es que el vector alcance realmente su objetivo y no quede diseminado por el organismo. Por ello existe un procedimiento que consiste en introducir, junto al material genético que queremos transferir, moléculas que puedan ser reconocidas por los receptores de la célula diana. Estas moléculas pueden ser azucares, péptidos, hormonas, etc. y su ventaja respecto a otros modelos es que se establece una interacción muy específica, como la interacción transportador/célula, y no muy inespecífica como la que se verifica entre las cargas iónicas.
A) Liposomas
En 1965 se descubrió que los liposomas (bolsas rodeadas de una membrana lipídica a semejanza de una célula eucariota animal) eran capaces de hacer entrar DNA en la célula, pero hasta 1980 no se consiguió una eficacia de transfección adecuada. Existen dos tipos de liposomas: liposomas catiónicos y liposomas aniónicos.
B) Liposomas catiónicos
Se encuentran cargados positivamente por lo que interaccionan con la carga negativa del DNA. Existen muchos lípidos que se usan para formar estos liposomas e incluso se están probando mezclas de estos. Son recomendables en transfecciones "in vitro".
Las ventajas de los liposomas es que protegen de la degradación al transgén hasta su llegada al núcleo. La talla del DNA introducido en ellos no tiene límite. Podemos hacerlos llegar a tejidos específicos incluyendo receptores en la capa lipídica.
Sin embargo como desventaja presentan la baja eficacia de transfección, una expresión transitoria, cierto grado de toxicidad celular y pueden ser inhibidos por componentes séricos.
Sin embargo como desventaja presentan la baja eficacia de transfección, una expresión transitoria, cierto grado de toxicidad celular y pueden ser inhibidos por componentes séricos.
C) Biolística o Gene-gun
Consiste en el bombardeo de los tejidos con partículas de oro o tungsteno que llevan adheridas a ellas el DNA. El bombardeo se realiza mediante una descarga con helio como si fuera una pistola (de allí el nombre de la técnica).
La capacidad de penetración es limitada usándose en líneas celulares, epidermis, músculo e hígado. Su expresión es transitoria y en la zona de descarga se produce una gran muerte celular. Esta técnica puede realizarse "ex vivo" (en el caso de células animales) e "in vivo" (en el caso de células vegetales).
No hay comentarios:
Publicar un comentario